

CHEMISTRY

Chemistry : Section-A (Q. No. 051 to 085)

51. Given below are two statements : one is labelled as
 Assertion A and the other is labelled as Reason R :
 Assertion A : Metallic sodium dissolves in liquid ammonia

giving a deep blue solution, which is paramagnetic.

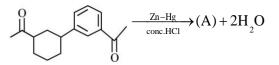
Reason R : The deep blue solution is due to the formation of amide.

In the light of the above statements, choose the **correct** answer from the options given below :

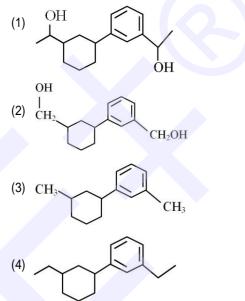
- Both A and R are true but R is NOT the correct explanation of A.
- (2) A is true but R is false
- (3) A is false but R is true
- (4) Both A and R are true and R is the correct explanation of A.

Ans. (2)

52. The conductivity of centimolar solution of KCl at 25 C is
 0.0210 ohm⁻¹ cm⁻¹ and the resistance of the cell containing the solution at 25 C is 60 ohm. The value of cell constant is -


(1) 3.28 cm ⁻¹	(2) 1.26 cm ⁻¹
(3) 3.34 cm ⁻¹	(4) 1.34 cm ⁻¹

Ans. (2)


- 53. For a certain reaction, the rate = k [A]² [B], when the initial concentration of A is tripled keeping concentration of B constant, the initial rate would
 - (1) increase by a factor of six
 - (2) increase by a factor of nine
 - (3) increase by a factor of three
 - (4) decrease by a factor of nine

Ans. (2)

54. Identify product (A) is the following reaction :

TEST PAPER WITH ANSWER

Ans. (4)

55. Which one is an example of heterogenous catalysis ?(1) Hydrolysis of sugar catalysed by H⁺ ions.

(2) Decomposition of ozone is presence of nitrogen monoxide.

(3) Combination between dinitrogen and dihydrogen to form ammonia in the presence of finely divided iron.

(4) Oxidation of sulphur dioxide into sulphur trioxide in the presence of oxides of nitrogen.

Ans. (3)

56. Given below are two statements : one is labelled as Assertion A and the other is labelled as Reason R.

Assertion A : Helium is used to dilute oxygen in diving apparatus.

Reasons R : Helium has high solubility in O2.

In the light of the above statements, choose the **correct** answer from the options given below :

- (1) Both **A** and **R** are true but **R** is **NOT** the correct explanation of **A**.
- (2) **A** is true but **R** is false
- (3) A is false but R is true
- (4) Both **A** and **R** are true and **R** is the correct explanation of **A**.

Ans. (2)

57. Amongst the following, the total number of species NOT having eight electrons around central atom in its outer most shell, is

NH₃, AICI₃, BeCl₂, CCl₄, PCl₅:

Ans. (4)

Final NEET(UG)-2023 EXAM/07-05-2023

58.	The correct order of energy molecule, is	gies of molecular orbitals of N_2		
	(1) $\sigma 1s < \sigma^* 1s < \sigma 2s < \sigma^*$	$^{*}2s < \sigma 2p_{z} <$		
		$p_x = \pi^* 2p_y < \sigma^* 2p_z$		
	(2) $\sigma_{1s} < \sigma_{1s}^* < \sigma_{2s}^* < \sigma_{2s}^* < \sigma_{2p_z}^* < \sigma_{2p_z}^$			
	$\sigma^* 2p_z < (\pi 2p_x = \pi 2p_y) < (\pi^* 2p_x = \pi^* 2p_y)$			
	$(3) \sigma 1s < \sigma^* 1s < \sigma 2s < \sigma$	$\sigma^* 2s < (\pi 2p_x = \pi 2p_y) < 0$	An	
	$(\pi^* 2p_x = \pi^* 2p_y) < c$	$\sigma 2p_z < \sigma^* 2p_z$	63.	
	(4) $\sigma_{1s} < \sigma_{1s} < \sigma_{2s} < \sigma_{2s} < \sigma_{2p} < (\pi 2p) = \pi 2$	$^{*}2s < (\pi 2p = \pi 2p)_{y} < p$		
Ans.	z x (4)	y z		
59.	(+) Match List-I with List-II.			
	List-I	List-II		
	A. Coke	I. Carbon atoms are		
		sp ³ hybridised		
	B. Diamond	II. Used as a		
		dry lubricant		
	C. Fullerene	III. Used as a		
		reducing agent		
	D. Graphite	IV. Cage like molecules		
	Choose the correct answer from the options given below:			
	(1) A-IV, B-I, C-II, D-III			
	(2) A-III, B-I, C-IV, D-II			
	(3) A-III, B-IV, C-I, D-II			
	(4) A-II, B-IV, C-I, D-III			
Ans.	(2)			
60.		s, π bonds and lone pair of	An	
	electrons in pyridine, res		64.	
	(1) 12, 3, 0	(2) 11, 3, 1		
A	(3) 12, 2, 1	(4) 11, 2, 0		
Ans.	(2) The element expected to f	form largest ion to achieve the		
61.		form largest ion to achieve the		
	nearest noble gas configuration is (1) F (2) N			
	(3) Na	(4) O		
Ans.	(2)			
62.	Given below are two sta	tements : one is labelled as		
	Assertion A and the other is labelled as Reason R.			
	Assertion A : A reaction can have zero activation energy.			
	Reasons R : The minimum extra amount of energy			
	absorbed by reactant mole			
	·	old value, is called activation		
	energy.			
			An:	

In the light of the above statements, choose the correct
answer from the options given below :

- (1) Both **A** and **R** are true but **R** is **NOT** the correct explanation of **A**.
- (2) **A** is true but **R** is false
- (3) A is false but R is true
- (4) Both **A** and **R** are true and **R** is the correct explanation of **A**.

Ans. (1)

- **3.** Consider the following reaction and identify the product (P).
 - $\begin{array}{ccc} CH_{3} \hbox{--} CH \hbox{--} CH_{-} CH_{3} \\ GH \end{array} \xrightarrow{HBr} \end{array} Product (P)$
 - ³ 3-Methylbutan-2-ol
 - (1) $CH_3CH=CH-CH_3$
 - $\begin{array}{ccc} (2) & CH_3-CH-CH-CH_3 \\ & & & \downarrow \\ & & & CH_3 & Br \end{array}$

$$\begin{array}{c} CH_3 \\ \downarrow \\ (3) CH_3 - C - CH_2Br \\ LH_3 \end{array}$$

$$(4) \begin{array}{c} Br \\ \downarrow \\ CH_3 - C - CH_2 - CH_3 \\ \downarrow \\ CH_3 \end{array}$$

Ans. (4)

64. Given below are two statements : one is labelled asAssertion A and the other is labelled as Reason R :

Assertion A : In equation $\Delta_r G = -nFE_{cell}$, value of $\Delta_r G$ depends on n.

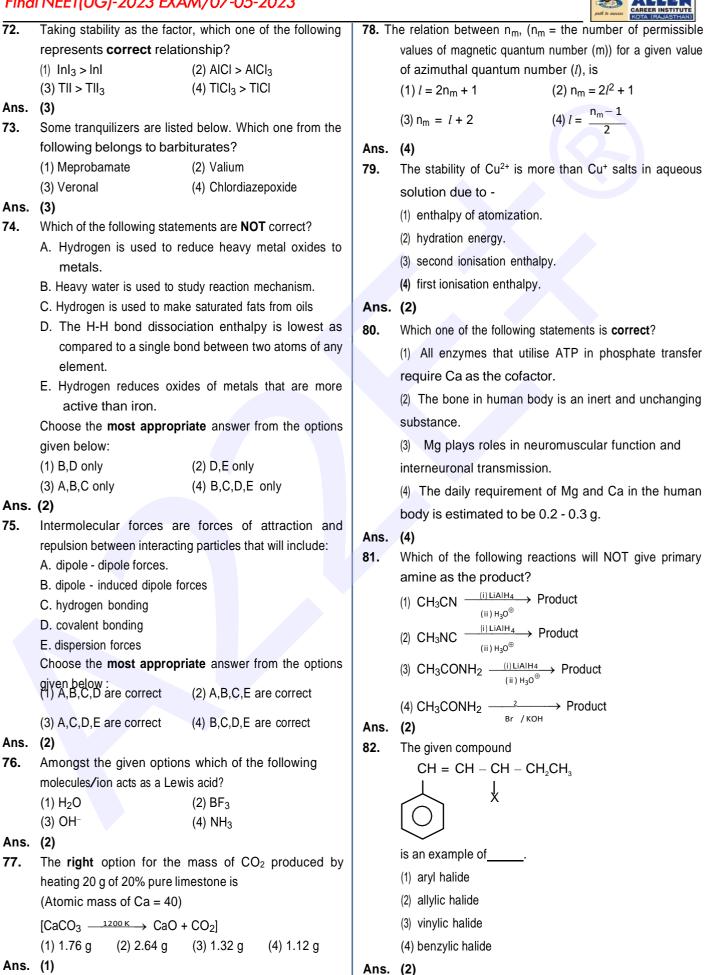
Reasons R : E_{cell} is an intensive property and $\Delta_r G$ is an extensive property.

In the light of the above statements, choose the **correct** answer from the options given below :

- Both A and R are true and R is NOT the correct explanation of A.
- (2) **A** is true but **R** is false
- (3) A is false but R is true
- (4) Both A and R are true and R is the correct explanation of A.
- Ans. (4)

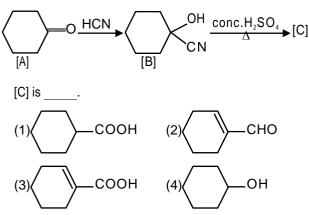
path to success	CAREER INSTITUTE KOTA: (RAJASTHAN)		CODE - F6
65.	Which amongst the following options is correct graphical	68.	Select the correct Statements from the following :
	representation of Boyle's Law?		A. Atoms of all elements are composed of two
	\bigwedge $/^{13}$ \mathbb{T}_2		fundamental particles.
	Î // Ŀ		B. The mass of the electron is 9.10939 10 ⁻³¹ kg.
	(1) P		C. All the isotopes of a given elements show same
	(1) $T_3 > T_2 > T_1$		chemical properties.
	\rightarrow		D. Protons and electrons are collectively known as
	1/V		nucleons.
	↑		E. Dalton's atomic theory, regarded the atom as an
			ultimate particle of matter.
	P T ₃		Choose the correct answer from the options given
	(2) T_2		below.,
			(1) C,D and E only (2) A and E only
	1/∨ →		(3) B,C and E only (4) A,B and C only
	$\uparrow \qquad \bigvee_{v_2}$	Ans.	(3)
		69.	A compound is formed by two elements A and B. The
	(3) P		elements B forms cubic close packed structure and atoms
	(3) V ₁ < V ₂ < V ₃		of A occupy 1/3 of tetrahedral voids. If the formula of
			the compound is $A_x B_y$, then the value of
	· →		x + y is in option (2) 2
	↑ 111 T ₃ >T ₂ >T ₁		(1) 4 (2) 3 (2) 2 (4) 5
		Ans.	(3) 2 (4) 5 (4)
	P J ₁	70.	Given below are two statements:
	(4) T_2	70.	
			Statement I : A unit formed by the attachment of a base
A	$\vee \rightarrow$		to l' position of sugar is known as nucleoside
Ans. 66.	(1) In Lassaigne's extract of an organic compound, both		Statement II : When nucleoside is linked to phosphorous
	nitrogen and sulphur are present, which gives blood red		acid at 5'-position of sugar moiety, we get nucleotide.
	colour with Fe ³⁺ due to the formation of-		In the light of the above statements, choose the correct
	(1) NaSCN (2) $\left[Fe(CN)_{s} NOS \right]^{4-}$		answer from the options given below:
	(3) $\left[\operatorname{Fe}(\operatorname{SCN}) \right]^{2+}$ (4) $\operatorname{Fe}[\operatorname{Fe}(\operatorname{CN})]$.xH O		(1) Both Statement I and Statement II are false
	$4 \begin{bmatrix} 6 \end{bmatrix}_3 2$		(2) Statement I is true but Statement II is false
Ans. 67.	(3) Identify the product in the following reaction :		(3) Statement I is false but Statement II is true
07.			(4) Both Statement I and Statement II are true
	N ₂ Cl	Ans.	
	(i)Cu ₂ Br ₂ /HBr		
	$\xrightarrow{(ii)Mg/dryehter} Product$	71.	Which amongst the following molecules on
	MaBr		polymerization produces neoprene?
	MgBr		
	(1)		$H_2C = C - CH = CH_2$
	\checkmark		(2) $H_2C = CH - C \equiv CH$
	ОН		CH3
	ОН		$ \begin{array}{c} (3) \\ H_2C = C - CH = CH_2 \end{array} $

$$(4) H_2C = CH - CH = CH_2$$


Ans. (1)

(3)

Br


(4)

Final NEET(UG)-2023 EXAM/07-05-2023

83. Complete the following reaction :

Ans. (3)

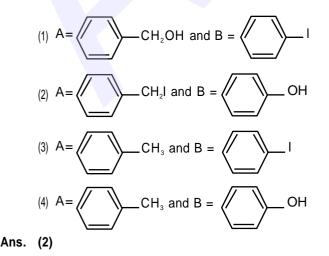
84. Homoleptic complex from the following complexes is :

- (1) Diamminechloridonitrito-N-platinum (II)
- (2) Pentaamminecarbonatocobalt (III) chloride
- (3) Triamminetriaquachromium (III) chloride
- (4) Potassium trioxalatoaluminate (III)

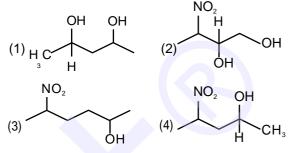
Ans. (4)

- 85. Weight (g) of two moles of the organic compound, which is obtained by heating sodium ethanoate with sodium hydroxide in presence of calcium oxide is :

 (1) 32
 (2) 30


 - (3) 18 (4) 16
- Ans. (1)

Chemistry : Section-B (Q. No. 086 to 100)


86. Consider the following reaction

Identify products A and B :-

87. Which amongst the following will be most readily dehydrated under acidic conditions ?

Ans. (1)

- **88.** The equilibrium concentrations of the species in the reaction A + B \longrightarrow C + D are 2, 3, 10 and 6 mol L⁻¹, respectively at 300 K. ΔG^0 for the reaction is (R = 2 cal/mol K)
 - (1) –137.26 cal (2) –1381.80 cal
 - (3) –13.73 cal (4) 1372.60 cal

Ans. (2)

89. Given below are two statements :

Statement I : The nutrient deficient water bodies lead to eutrophication.

Statement II: Eutrophication leads to decrease in the level of oxygen in the water bodies.

In the light of the above statements, choose the **correct** answer from the options given below :

- (1) Both **Statement I** and **Statement II** are false
- (2) Statement I is correct but Statement II is false.
- (3) Statement I is incorrect but Statement II is true.
- (4) Both Statement I and Statement II are true..

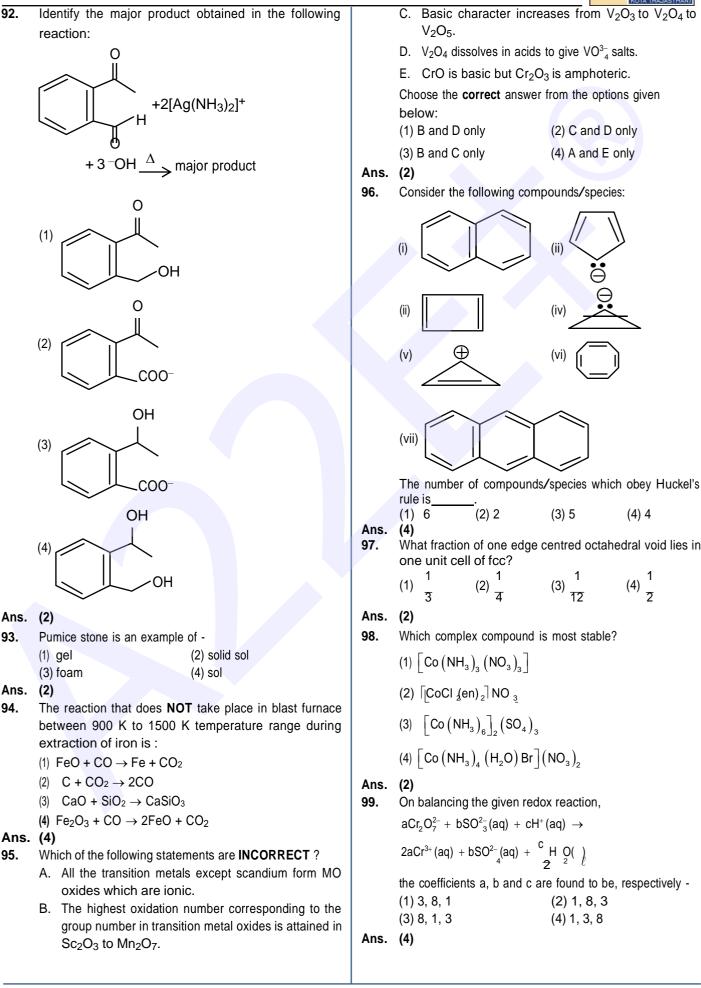
Ans. (3)

90. Which amongst the following options is the **correct** relation between change in enthalpy and change in internal energy?

(1)
$$\Delta H = \Delta U + \Delta n_g RT$$

(3) $\Delta H + \Delta U = \Delta nR$

(4) $\Delta H = \Delta U - \Delta n_g RT$


(2) $\Delta H - \Delta U = -\Delta nRT$

Ans.	(1)

91. Match List-I with List-II : List-I List-II (Oxoacids of Sulphur) (Bonds) A. Peroxodisul-I. Two S-OH, Four S=O, One S-O-S phuric acid II. Two S-OH, One S=O B. Sulphuric acid III. Two S-OH, Four S=O, C. Pyrosulphuric acid One S-O-O-S IV. Two S-OH, Two S=O D. Sulphurous acid Choose the **correct** answer from the options given below: (1) A-III, B-IV, C-I, D-II (2) A-I, B-III, C-IV, D-II (3) A-III, B-IV, C-II, D-I (4) A-I, B-III, C-II, D-IV Ans. (1)

5

Final NEET(UG)-2023 EXAM/07-05-2023

(2) C and D only

(4) A and E only

(ii)

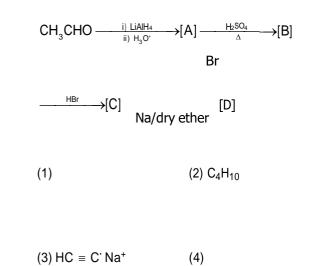
(iv

(vi)

(3) 5

(3) 1 12

(2) 1, 8, 3


(4) 1, 3, 8

(4) 4

 $(4) \frac{1}{2}$

Identify the final product [D] obtained in the following 100. sequence of reactions.

(3) HC \equiv C' Na⁺

